Package: socialranking 1.2.0

Felix Fritz

socialranking: Social Ranking Solutions for Power Relations on Coalitions

The notion of power index has been widely used in literature to evaluate the influence of individual players (e.g., voters, political parties, nations, stockholders, etc.) involved in a collective decision situation like an electoral system, a parliament, a council, a management board, etc., where players may form coalitions. Traditionally this ranking is determined through numerical evaluation. More often than not however only ordinal data between coalitions is known. The package 'socialranking' offers a set of solutions to rank players based on a transitive ranking between coalitions, including through CP-Majority, ordinal Banzhaf or lexicographic excellence solution summarized by Tahar Allouche, Bruno Escoffier, Stefano Moretti and Meltem Öztürk (2020, <doi:10.24963/ijcai.2020/3>).

Authors:Felix Fritz [aut, cre], Jochen Staudacher [aut, cph, ths], Moretti Stefano [aut, cph, ths]

socialranking_1.2.0.tar.gz
socialranking_1.2.0.zip(r-4.5)socialranking_1.2.0.zip(r-4.4)socialranking_1.2.0.zip(r-4.3)
socialranking_1.2.0.tgz(r-4.4-any)socialranking_1.2.0.tgz(r-4.3-any)
socialranking_1.2.0.tar.gz(r-4.5-noble)socialranking_1.2.0.tar.gz(r-4.4-noble)
socialranking_1.2.0.tgz(r-4.4-emscripten)socialranking_1.2.0.tgz(r-4.3-emscripten)
socialranking.pdf |socialranking.html
socialranking/json (API)
NEWS

# Install 'socialranking' in R:
install.packages('socialranking', repos = c('https://jassler.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jassler/socialranking/issues

On CRAN:

5.08 score 6 stars 6 scripts 207 downloads 75 exports 7 dependencies

Last updated 6 months agofrom:955a4c1a48. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winNOTENov 20 2024
R-4.3-macNOTENov 20 2024

Exports:%:%%>=banz%%>=cop%%>=cp%%>=cumuldom%%>=dom%%>=duallex%%>=ks%%>=L1%%>=L2%%>=lex%%>=LP%%>=LPS%%>banz%%>cop%%>cp%%>cumuldom%%>dom%%>duallex%%>ks%%>L1%%>L2%%>lex%%>LP%%>LPS%appendMissingCoalitionsas.PowerRelationcoalitionLookupcoalitionsAreIndifferentcopelandRankingcopelandScorescpMajorityComparisoncpMajorityComparisonScorecreatePowersetcumulativelyDominatescumulativeScoresdominatesdoRankingdualLexcelRankingelementLookupequivalenceClassIndexgenerateNextPartitiongenerateRandomPowerRelationis.PowerRelationkramerSimpsonRankingkramerSimpsonScoresL1RankingL1ScoresL2RankingL2Scoreslexcel1Rankinglexcel1Scoreslexcel2Rankinglexcel2ScoreslexcelPRankinglexcelPScoreslexcelPSRankinglexcelPSScoreslexcelRankinglexcelScoresLPRankingLPScoresLPSRankingLPSScoresmakePowerRelationMonotonicnewPowerRelationnewPowerRelationFromStringordinalBanzhafRankingordinalBanzhafScoresPowerRelationpowerRelationGeneratorpowerRelationMatrixSocialRankingtestRelationtransitiveClosure

Dependencies:clusterrbibutilsRdpackrelationsrlangsetsslam

socialranking: A package for evaluating ordinal power relations in cooperative game theory

Rendered fromsocialranking_pdf.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-05-16
Started: 2022-10-26

socialranking: A package for evaluating ordinal power relations in cooperative game theory

Rendered fromsocialranking.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2024-05-16
Started: 2022-03-28

Readme and manuals

Help Manual

Help pageTopics
Append missing coalitionsappendMissingCoalitions
Create PowerRelation objectas.PowerRelation as.PowerRelation.character as.PowerRelation.list
Are coalitions indifferentcoalitionsAreIndifferent
Copeland-like methodcopelandRanking copelandScores
CP-Majority relationcpMajorityComparison cpMajorityComparisonScore
Create powersetcreatePowerset
Cumulative scorescumulativelyDominates cumulativeScores
Dominancedominates
Create a 'SocialRanking' objectdoRanking
Element lookupelementLookup
Get index of equivalence class containing a coalitioncoalitionLookup equivalenceClassIndex
Kramer-Simpson-like methodkramerSimpsonRanking kramerSimpsonScores
L1 RankingL1Ranking L1Scores lexcel1Ranking lexcel1Scores
L2 RankingL2Ranking L2Scores lexcel2Ranking lexcel2Scores
Lexicographical ExcellencedualLexcelRanking lexcelRanking lexcelScores
LP RankinglexcelPRanking lexcelPScores LPRanking LPScores
LP* RankinglexcelPSRanking lexcelPSScores LPSRanking LPSScores
Make Power Relation monotonicmakePowerRelationMonotonic
New Power RelationnewPowerRelation
New 'PowerRelation' objectnewPowerRelationFromString
Ordinal Banzhaf rankingordinalBanzhafRanking ordinalBanzhafScores
PowerRelation objectis.PowerRelation PowerRelation print.PowerRelation
Generate power relationsgenerateNextPartition generateRandomPowerRelation powerRelationGenerator
Create relation matrixas.relation.PowerRelation powerRelationMatrix
'SocialRanking' objectSocialRanking
Test relation between two elements%:% %>=banz% %>=cop% %>=cp% %>=cumuldom% %>=dom% %>=duallex% %>=ks% %>=L1% %>=L2% %>=lex% %>=LP% %>=LPS% %>banz% %>cop% %>cp% %>cumuldom% %>dom% %>duallex% %>ks% %>L1% %>L2% %>lex% %>LP% %>LPS% testRelation
Transitive ClosuretransitiveClosure